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Abstract

This technical note examines some of the complexities of interoperability and some recent
research approaches to achieving it. There are many reasons why achieving interoperability
between complex, heterogeneous systems is difficult. These include the problem of
semantics; the differences between hardware and software; the difference between bounded
and unbounded software systems; the need for trust, trustworthiness, and security in software
systems; and the difficulty of quantifying interoperability. Many research efforts currently
underway are aimed at finding improvements in both technologies and procedures to
achieving interoperability more easily. These efforts include work in ontologies, service-
oriented architectures, emergent methods, and new approaches to security. While these efforts
show many signs of promise, a considerable amount of work will be needed to bring these to
a mature state.
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1 Introduction

In this paper, we consider relationships between multiple software systems, specifically, those
relationships that produce cooperation between these systems. This cooperation is generally
called interoperability. We examine some of the complexities of interoperability, and some
recent research approaches to achieving it. As a preface, we first set out our initial
understanding of what interoperability is, together with some of its necessary characteristics.

1.1 Interoperation as a Relationship

The term interoperability has many definitions; a reasonable one is

The ability of a collection of communicating entities to (a) share specified
information and (b) operate on that information according to a shared

operational semantics in order to achieve a specified purpose in a given
context.'

The essence of interoperation is that it is a relationship between systems, where systems are
the entities in the above definition. While our focus will be on computer-based systems, the
definition extends beyond the world of mechanical systems to organizational and other
contexts. To interoperate one system must provide a service 2 that is used by another. This

cannot be achieved without, at a minimum, communication from the provider to the
consumer of the service.

Interoperability relationships necessarily involve communication. Just as in the physical
world a relationship of proximity may not involve interoperability (e.g., the table is close to
the chair), a proximity relationship in the software domain may not involve interoperation.
For instance, the mere fact that two software systems are both installed on a single machine
does not imply that they are interoperable (though they might, of course, be interoperable by
some other relationship).

1.2 Changing Demands on Interoperability

While there are many ways that multiple, heterogeneous systems can interoperate, we posit

two of the most important, which we term design-time interoperability and run-time
interoperability.

Carney, D.; Smith, J.; & Place, P. Topics in Interoperability: Infrastructure Replacement in a
System of Systems Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University.
To be published.

2 While it seems obvious, it must be stated that provision of service includes the provision of data.
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In the former case, it is often possible for all of the parties responsible for all components of

a system of systems to agree a priori on the particulars necessary to achieve whatever level of

interoperability is needed. These systems of systems tend to be closed (e.g., the various
systems that make up an automobile) and amenable to control by some individual or group

with full responsibility for the overall system and its interoperation. When no individual is in
total control, agreement among the various system managers can be achieved before the

systems are developed. We term this kind of interoperation design-time. (This is, for example,
how the Army's software blocking policy produces such agreement.) Design-time
interoperability is relatively well understood and, while not necessarily easily achieved, is

well within current technological capability for many classes of systems.

A very different notion ofinteroperability, which we term run-time interoperability, is less
well understood. In this kind of system of systems, now imagined for "net-centric operations"

(NCO), it is assumed that the constituent systems will be able to support ever-changing

demands for service; to meet those demands, the components will continually adapt to new

operational contexts. Because the operational context is changing continuously, the

developers of those systems cannot know a priori the systems with which they will

interoperate. The result is that the difficulty of reaching agreement between developers has

been magnified, since agreement can only be reached after the systems have been developed.
In essence, interoperability becomes a run-time and not a design-time problem. The most

significant implication of this is that, since interoperability becomes a run-time issue, it
follows that no overall set of agreements can be reached, but that each system must negotiate

on a pair-wise basis on the meaning of a particular communication, and do this dynamically,
at run-time.

1.3 The Need for Flexibility

Design-time and run-time interoperability exhibit many differences. For instance, design-time

interoperable systems achieve their necessary degree of interoperability only by means of

tight programmatic control of engineering choices. This approach typically comes at high
cost, and involves inflexible agreements about specific requirements (e.g., standards, data
semantics, and QoS), very close interaction between the organizations responsible for the
systems, and very extensive testing to verify the specific interoperable pathways. The

resulting integrations are commonly too inflexible to permit introduction of any new

elements into the systems. Also, maintaining such interoperability has its own level of

difficulty as system versions change and evolve. More significant to end users, these
inflexible integrations limit the users' ability to form ad hoc, creative solutions when

necessary.

By contrast, we can consider several tactics employed by U.S. Armed Forces in Afghanistan
in 2001 that manifest run-time interoperability: B-52's were used to provide on-call close air
support; F- 18's were used to support cavalry charges; and Predators provided real-time video
to gunships. In Iraq, soldiers without military issue radios maintained contact within convoys

by using commercial walkie-talkies; they also used commercial Global Positioning System
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positioners to create their own maps of Iraqi desert roads [Davis 03]. None of these solutions
were the result of tightly integrated systems of systems that had been predefined by Pentagon
planners. Rather, these solutions resulted from creative solutions developed to address

situational needs.

What these examples suggest is that, to meet changing business or battlefield demands, users

want integrated solutions, not integrated systems. Users will cobble together any
combination of doctrine, organization, computing and other material capability to provide an
integrated solution to their problem. The type of tightly coupled systems of systems described
above, which is what too many users currently have available, often frustrate their efforts.

Thus, the goal for planners and developers of future computing capabilities is to find ways to
support interoperability between components while maintaining the flexibility to construct
new, creative solutions.

This technical note discusses several conceptual issues that affect our understanding of the
task of achieving interoperability, and provides short overviews of some new software
approaches that are potential solutions. In Section 2 we posit some of the factors that
complicate the problem of system interoperation. In Section 3 we examine some of the more
promising research efforts currently underway. Section 4 is a brief summary of the paper.

CMU/SEI-2005-TN-033 3



2 Some Complicating Factors

In this section, we consider a number of factors that make achieving interoperability difficult
in today's software-intensive systems of systems. Of the many complicating factors that exist,

we posit the following as exemplars:

e the problem of semantics

a the differences between hardware and software

* the difference between bounded and unbounded software systems

* the need for trust, trustworthiness, and security in software systems

While we shall discuss these factors separately, significant interrelationships will become
apparent. The first factor, that of semantics, permeates every other aspect of interoperability.
Then, after noting that a key difference between software and hardware systems is that
software boundaries are far more fluid than hardware, we shall see that this concept leads
directly to considering the differences between bounded and unbounded systems. Finally,
even conjecturing about unbounded systems necessitates considering how security and trust

can operate in such a context.

2.1 The Problem of Semantics

Interoperability depends to a large extent on common understanding. For two systems to

interoperate, hardware pins must align, communication protocols must be consistent, data
formats and structure must be understandable, system invocation mechanisms must be
shared, and so forth. Yet even with all of the things in place to assure connectivity, there is
still no guarantee that either system will be able to the convert signals, bits, and bytes into the
information necessary to perform its requisite tasks. Both systems must also make consistent
interpretations on the meaning of the data communicated between them; they must exhibit
semantic interoperability.

As a trivial example, suppose one system sends the number "5" to another system. What does
that communication mean? The answer is that its meaning depends on both systems having

agreed that "5" represents a high-priority risk, or that it represents the fifth day of the week,
or some other such meaning. In other words, we need to relate the communicated data itself
to the meaning of that data. We may, therefore, informally define semantics as the implied
meaning of data, providing a way to establish what entities mean with respect to their roles in

a system.
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There is a limited number of ways that agreements on meaning can be achieved. In the

context of design-time interoperability, semantic agreements are reached in the same manner
as interface agreements between the constituent systems. If the system of systems is a closed

system, then the context of those agreements is only that of the system of systems; there is no

need for any other entity to share in the agreements, or to understand the implied meaning of

the data. However, in the context of run-time interoperability, the situation is more complex,
since there is need for some manner of universal agreement, so that a new system can join, ad

hoc, some other group of systems. The new system must be able to usefully share data and
meaning with those other systems, and those other systems must be able to share data and
meaning from an unfamiliar newcomer.

One mechanism often mentioned to solve this problem is the use of standards, to which all
systems adhere, and which govern all interactions, whether planned or otherwise. If this goal

could be achieved, then the standards would provide a third-party locus for agreements:
system A follows standard Y, and system B also follows standard Y, hence interconnections
between system A and B are guaranteed to succeed, even if they have been designed and built

in complete isolation from each other.

This is, in fact, the situation that occurs at the lower levels of software interconnection.

Standards define the parameters of the physical components, making it possible to connect
one hardware device to another. Similarly, standards define protocols for communication so
that data can be successfully passed from one system to another.

But at the higher levels of meaning, gaining consensus on such "universal" standards has

proven remarkably difficult to achieve. For one thing, as systems deal more and more with

meanings, namely, with the complexities of "information" as opposed to raw data, the

ambiguity of human semantics enters in. Thus, even in human communication,
misunderstandings arise. It is not uncommon for two people to believe that they fully

understand each other's words, yet their understandings are different. This ambiguity does
not disappear when the communication takes place through software systems. Another
problem with standards is that, even when efforts have been made to gain universal and

standardized agreements on some useful subset of information, the rapid march of
technological change has been much faster than the pace at which these standardized
agreements can be implemented in systems. Hence, many such agreements have been

obsolete even before they were achieved.

One way proposed for sharing semantic agreements has been the use of mathematics. But

even in the purely mathematical representations of semantics, the problem is quite difficult.

For instance, if one system represents its meaning using set theory and another uses a process
algebra, it is unlikely that those two systems can communicate their semantics to each other

dynamically. (Indeed, mathematics-based semantic agreements are difficult to resolve even at

design time.)
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2.2 Differences between Hardware and Software

There has been considerable argument over the degree to which software is genuinely
different from hardware; this argument typically finds expression in a parallel argument about
software engineering vs. system engineering. The long-standing view is that software

engineering is less disciplined than the system engineering commonly found in hardware
projects. Critics of software engineering point to this supposed lack of discipline as a leading

cause of failure for many software-intensive systems. This perspective is supported by the
degree of success that has been achieved by applying more disciplined approaches from
system engineering to software engineering activities (most notably the Capability Maturity

Model®(CMM®) and its later instantiation, the Capability Maturity Model Integration

(CMMI®).

We will not argue whether this impression is fair or not. However, we do assert that at least
part of the solution lies in the realization that software genuinely is different from hardware:

The potential rate of change for software components vastly exceeds that for
hardware components. This flexibility is a direct result of software's malleability;

software is easier and cheaper to change, and it requires no retooling of production

machinery.

* Hardware interfaces, being observable, are easier to identify; they are also apt to be
less complex than software interfaces.

* The boundaries between software components are not as easy to define and are more

fluid than those between hardware components.

Hardware components tend to be better isolated from other components. Hence,
changes to software components tend to have more widely cascading effects on other
components, due to their greater interdependence.

Quality of service (QoS) for hardware components is better understood, in terms of
what is required, which component can deliver it, and how it is measured. Hardware
engineers also have a better understanding of how to increase performance for a
specific quality of service.

Most of the attempts to improve software engineering assume the superiority of the system

engineering common for hardware projects. These attempts usually consist of strategies that
target areas such as requirements management, design, standards, and management
processes, and seek to apply techniques successful in hardware to the software engineering

domain.

Capability Maturity Model, CMM, and CMMI are registered in the U.S. Patent and Trademark

Office.
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However, the gains achieved in this manner have been uneven, and require tremendous and
disciplined effort to sustain, particularly as the proportion of software increases in most
systems. And the problem is greatly intensified when several independently developed
software systems must cooperate-the normative condition when several software systems
interoperate. When no one controls the whole, the best efforts at hardware-derived discipline
very often fail.

The typical perceived solution is to apply still more hardware and system engineering
discipline to gain better control of the changes to the various components. But there is an
alternate perspective. It speculates that ultimately all traditional approaches to managing
software complexity will fail in large-scale systems of systems. The failure will occur
precisely because the techniques try to counteract the features of software that give it its
power, for instance, its malleability and flexibility. And as these techniques apply ever-
increasing discipline and coordination, the engineering problems will become ever more
resistant to solution, as software, true to its inherent nature, becomes used in ever more
complex and unanticipated ways.

Proponents of this alternate perspective maintain that the way to achieve and sustain the
interconnected system of systems that are in such constant demand is to use the inherent
characteristics of software (e.g., its flexibility) as a key to the solution, rather than something
to be tamed. They suggest that research efforts must begin to determine just how the
traditional hardware-derived approach breaks down, and then to modulate traditional
engineering techniques with new techniques better fitted to the real challenges at hand.

2.3 Bounded vs. Unbounded Systems

Engineers often make the assumption that the requirements for a system are completely
knowable. We refer to such systems, developed with complete knowledge of the
expectations and actions of all participating components, as "bounded." Bounded systems
typically rely on effective mechanisms involving centralized control, centralized data, or
hierarchical structures both in the development and execution of the system in order to
provide the required degree of trust.

The degree to which software systems have ever been truly bounded is debatable. Software
systems (and software engineers) have, as described in the previous section, been plagued by
a very large number of spectacular failures, many of which relate to unclear requirements.
But whatever the truth for the past, it is a virtual certainty for the future that software
engineers will probably never have complete knowledge of the expectations and actions for
the software systems of systems they will build.

Consider, for instance, one growing phenomenon: many systems of systems now employ
their components in ways that were neither intended nor anticipated. Such is clearly the case
regarding the Internet, where the numbers of participants and the quality of the information
they provide is often unknown. It is also the case in complex systems of systems such as
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command and control, air traffic control, electric power grid, individual aircraft, and modem

PC operating systems. For example, in recent battlefield encounters, agility and rapid

progress were achieved by direct and unplanned interactions among ground troops,

helicopters, artillery, and bombers, all using equipment whose designs did not anticipate the
ad hoc manner of use.

The massively interconnected systems now imagined, such as the semantic Web, or the

DoD's net-centric operations are likely to contain even more component parts and be even
more dynamic, with participants and components almost constantly changing [W3C 01,

Cebrowski 88]. These systems of systems are unbounded, because they involve an unknown

number of participating systems. They require individual systems to act and interact in

unanticipated ways, often in the absence of complete information. It is not possible a priori to

understand all of the ways in which the elements in unbounded systems will behave. Unlike
bounded automated systems, where neither correct nor useful results can be computed in the
absence of complete and correct data, unbounded systems must function effectively with

incomplete data and with data that cannot be fully trusted.

It is in this context that the need for deep and rich semantic underpinnings is so vital. Making

an assumption that a new component or system can join a network of existing systems is also
making the assumption that there will be some significant level of understanding between the
newcomer and the existing systems; that understanding must be more than just ASCII or

HTML.

Given that few of today's systems (and systems of systems) are based on a rich and shared

semantics, and few exhibit the kind of flexibility required, making that assumption and

achieving that scenario can seldom succeed. There are many reasons for this. For instance,

the primary mechanisms for reducing error, compromise, and failure, and for achieving data
integrity and trust in closed, tightly coupled, and fully understood systems are far less
effective for unbounded systems of systems. Another reason is that few owners of such

bounded systems are willing to open their systems to any other system whose provenance is
unknown. This is because today's systems are highly vulnerable. Centralized data and control
create a single-point target for attacks, accidents, and other failures. They also create
communications vulnerabilities by increasing communication delay, transaction time, and
ultimately user response times. If the success of the system of systems depends on the

success of each of its components and subsystems, then an error, compromise, or failure in a
critical central component propagates to the system as a whole and undermines enterprise
success. The unknown provenance of the unbounded system presents a high risk for such

undermining activity.

2.4 Trust, Trustworthiness and Security

The issue of vulnerability described above is significant, and we consider it from the

standpoint of three related notions: trust, trustworthiness, and security. All of these notions
play a part in achieving interoperability, and all of them depend on deep, rich, and shared
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semantic understanding. Discussion of these notions is also dependent on our initial
definition, where we stress that interoperability can be considered only in a given context.

In the hoped-for context of unbounded systems of systems, trust in the actions and

capabilities provided by interoperating parties is essential. Each party to an interaction must
have, develop, or perceive a sense of whether the actions of interoperating parties can be

trusted. This sense of trust is not Boolean (e.g., parties can be trusted to varying degrees), is
context dependent (Party A can be trusted in a particular context but not in another), and is
time sensitive (Party A can be trusted for a certain period). Further, the absence of trust-
distrust-is less dangerous than misplaced trust: it is better to know that you cannot trust a

particular party than to misplace trust in a party.

Trustworthiness relates to the actual state of the end-to-end service provided (e.g., by a
system of systems). Thus, misplaced trust is essentially a condition where one party perceives

that a second party can be trusted, but the latter party is not trustworthy. Like trust,
trustworthiness is context and time dependent, but it is not continuous (e.g., for a specific
context, at a specific instance, the end-to-end capability is either trustworthy or not.).

Security addresses issues of confidentiality (information available only to those authorized),
integrity (information not corrupted due to unauthorized-by error or intent---change), and

availability (information not erased or inaccessible) [CERT 97]. Security concerns are
commonly addressed through either policies or technologies:

"* security policies identifying risks and threats, guidelines and security practices for system
management and for legitimate use, and guidelines for reacting to compromises in
security

"* security technologies to minimize or detect intrusion or to limit the damage, such as one-
use password technologies, firewalls, monitoring tools, security analysis tools, and

encryption

Whereas security is concerned with preventing unauthorized and accidental use, corruption,
and blocking of access, trust and trustworthiness are concerned with other factors and the
overall system behaving as expected. Thus, it is entirely possible for a highly secure and
error-free actor providing information over an equally secure network to be untrustworthy for
a particular need. For example, the data provided by a secure radar device with a slow sweep
rate may be untrustworthy for fire control of an anti-missile missile system. It would be a
mistake for the commander of the anti-missile system to trust the information from the radar
for this purpose. The key is that interoperating systems rely not only on secure interactions,

but on interactions that provide appropriate information for a given context and point in time.

Thus, the mechanisms that are useful for providing security are useful but insufficient for

constructing trustworthy capabilities and establishing trust between components. In

traditional system development, we circumvent this problem and establish trustworthiness of
components by working closely with component providers and modeling and testing the end-
to-end capability that is expected.
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However, we expect to require greater degrees of dynamism and on-the-fly composition for
future systems such as the Semantic Web and systems capable of net-centric warfare. For

these sorts of systems, unanticipated uses, rapidly evolving and uneven technology,
capabilities coming online and departing rapidly, changing mission needs, and potentially
untrustworthy and even adversarial users are the norm. Establishing the kind of complete

trustworthiness found in tightly coupled or bounded systems is highly unlikely and perhaps
even impossible in these environments.
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3 Some Current Proposed Solutions

3.1 Ontologies

An ontology defines the terms and relationships among terms that represent an area of
knowledge. In software engineering, computer-readable ontologies are growing in
importance for defining basic concepts within a domain. If multiple-domain applications are
developed utilizing a shared ontology, or if their distinct ontologies can be related, then the
applications can have a common understanding of data, and semantic interoperability is
enhanced. In addition, ontologies can be developed that relate information across domains,

opening up new possibilities for interoperability.

While offering promise for enhanced semantic interoperability by helping developers to
locate relevant descriptions and allowing computers to infer relationships and properties,

ontologies are hard to define well because

"* Few people are expert in the representation of knowledge, and these experts are
rarely the domain experts building ontologies. As a result, ontologies are often poorly
constructed and hard to maintain.

" Consensus building is a hard task that can be made more difficult by the scope and
diversity of the organization and domain(s), by the existence of legacy applications
that encourage advocates to fight for their solutions, and by widely different intended
uses of the ontology.

In addition, the long-term evolution of ontologies is a complex task. Since applications are
strongly coupled to specific ontology versions, evolution will be constrained to maintain
upward compatibility, unless mappings between versions are provided.

Several ontology languages have been developed, but interest is now focused on the Web
Ontology Language (OWL) [W3C 04b]. OWL is a core capability leading to the semantic
Web, which supports interoperation across system and organizational boundaries by
providing well-defined and shared meaning to data. OWL builds on other Web standards to
define ontologies that can be distributed across the Web. It is supported by a growing number
of tools (see http://www.w3.org/2004/OWL/#specs) and hundreds of domain ontologies
representing commercial, government, military, and academic interests have been developed
(see http://www.daml.org/ontologies/).

Merging ontologies or mapping between them is also a current research topic. While a variety

of approaches and tools are under investigation, almost all require significant human
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intervention, normally by an individual or group of individuals familiar with the ontologies to

be joined.

Two additional and somewhat contradictory problems with ontology evolution have been

noted: diffusion (or mission creep) and enforced orthodoxy.

Diffusion refers to a phenomenon whereby an ontology originally intended to serve one
purpose is adopted and extended to serve other purposes [Musen 05]. As a result, the

complexity and number of ontologies grow, becoming difficult to use for all and less useful
for the original intent. The International Classification of Diseases (ICD) that forms the basis

of all medical claims and reimbursements in the U.S. represents a case in point. The original

classification was created in the 190' century to compare causes of death. In 1948, the World
Health Organization took responsibility and added non-fatal diseases to the classification. In

1977, the ICD was expanded further to address statistics for the planning, monitoring and

evaluation of health services. It is now difficult to find and add terms amid codes such as

"W65.40: Drowning and submersion while in bath-tub, street and highway, while engaged in

sports activity."

Enforced orthodoxy refers to avoiding change to an ontology, even when change is needed.
Since the ontology represents a form of community orthodoxy, bias can develop against

change. Such orthodoxy is in part practical, since large volumes of data may be encoded
based on an obsolete model. Enforced orthodoxy may also hinder new ways of thinking,
particularly regarding revolutionary paradigm shifts, because the new thoughts that can be

constructed are limited by the language that is used.

In summary, ontologies provide a useful mechanism for sharing semantic content of data

across applications or system components. They may also help to increase the flexibility with

which components interoperate, but only if sufficiently broad ontologies are developed and
shared, and actively managed to prevent the loss of focus or constraining of new ideas.

3.2 Service Oriented Architectures

A service-oriented architecture (SOA) is a software architectural paradigm that is defined by
a collection of independent, self-contained services that can be accessed in a standard way.

Capabilities provided by individual services can be connected to perform required

processing.

A service is a coarse-grained, discoverable, and self-contained software entity that interacts

with applications and other services through a loosely coupled, often asynchronous, message-
based communication model [Brown 02]. A service differs from an object with associated

methods in that the service is normally coarser grained and tends to have a relatively small

set of interfaces employing messages with a standard format, structure, and semantics. A
common example of a capability that could be provided by a service is credit card validation

[Lewis 04].
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Proponents of SOA suggest the following advantages:

"* simple standards that define the available interfaces and structure of data that is

conveyed across those interfaces

"* platform- and language-independent interfaces based on these standards, which allow

applications to invoke services operating on any device supporting the SOA

regardless of the hardware platform, operating system, or implementation language

"* clear separation of service interface from implementation, allowing many service

upgrades to occur without impact on service users

"* message oriented communication allowing distribution across a wide area

"* loose coupling between services, thus minimizing interdependencies and facilitating

reuse

"* mechanisms for discovery of services available and for establishing connections with
services, facilitating service use 3

The most common form of SOA is represented by Web services, which define programmatic

interfaces for application to application communication across the World Wide Web. Web

services use the Simple Object Access Protocol (SOAP) and Web Services Design Language

(WSDL) standards to define an Extensible Markup Language (XML)-based protocol for

exchanging structured information. They also define a language for describing a Web service

in terms of the messages it sends and receives, along with bindings to underlying transport

and network protocols [W3C 04, W3C 01]. However, it is possible to implement SOA using

other protocols, languages, and technologies.

The hallmark of SOA is flexibility. Computing platforms and languages can vary; services

can be accessed across a network via simple, well-defined interfaces, and without concern for

side effects resulting from dependencies between services. These factors allow applications to
use (or be composed of) services efficiently and effectively. 4

However, SOA in isolation does little to guarantee interoperability. For interoperability to be

achieved by SOA, additional capabilities needed include

mechanisms for conveying additional semantic information about services such

as behavior, QoS and expected preconditions and post conditions. Currently, we

do not have good ways of representing this information such that a user of the

service could efficiently and reliably determine whether the service provides
appropriate capability for a given context.

3 Some experts do not include discovery mechanisms in core SOA capabilities. In fact, it is possible
to create an SOA that does not have an online discovery capability (e.g., no searchable database of
available services).

"4 Our experiments at the SEI have not convinced us that SOA is very quick and relatively simple for
engineers to use when building applications. See Lewis [Lewis 04].
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* mechanisms for conveying semantics of data required by and shared by a service.

Ontologies provide a good starting point, but new techniques are needed to map

between the different ontologies that are likely with independently developed
services.

* ways of achieving optimal and predictable performance and other QoS

expectations for the end to end capability provided by sequences of services and

other application components

ways of constructing services that have wide application to avoid proliferation of

similar, but slightly different, services

3.3 Emergent Properties

Emergent properties are those properties of a whole that are different from, and not

predictable from, the cumulative properties of the entities that make up the whole. The
concept of emergent properties becomes increasingly important as the number and type of
"actors" in a system of systems increase. Thus, large-scale networks such as the Internet (and

in the future, networks that support net-centric warfare) are likely to experience emergent
properties. Such networks are composed of large numbers of widely varied components
(hosts, routers, links, users, etc.) that interact in complex ways.

Of necessity, each participant in such real-world systems (both the actor in the network and
the engineer who constructed it) acts primarily in his or her own best interest. As a result,

perceptions of system-wide requirements are interpreted and implemented differently by
various participants, and local needs often conflict with overall system goals. Although

collective behavior is governed by control structures (e.g., in the case of the networks,
network protocols), central control can never be fully effective in managing complex, large-
scale, distributed, or networked systems.

The net effect is that the global properties, capabilities, and services of the system as a whole
emerge from the cumulative effects of the actions and interactions of the individual
participants propagated throughout the system. The resulting collective behavior of the

complex network shows emergent properties that arise out of the interactions among the
participants.

The effect of emergent properties can be profound. In the best cases, the properties can
provide unanticipated benefits to users. In the worst cases, emergent properties can detract
from overall capability. In all cases, emergent properties make predictions about behavior
such as reliability, performance, and security suspect. This is potentially the greatest risk to
wide-scale networked systems of systems. Any long-term solution must involve better
understanding and managing of emergent properties.

Recent research in the area of emergent algorithms has begun to identify, develop, and refine
the methods first developed for other sorts of systems to solve problems of interoperability
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[Davis 03]. These methods and techniques are derived by analogy from approaches that have

been effective in social, biological, and economic systems, but are applicable to the design,
implementation, and evolution of software in a systems-of-systems context.

At their most fundamental level, emergent algorithms provide an alternative to those
approaches that achieve interoperability through ever tighter control of engineering processes
and technology choices. Emergent algorithms exploit cascading effects of loosely coupled,

dynamically changing, and partially trusted neighbors to achieve a common purpose shared

by a subset of the participants.

Only a limited repertoire of emergent algorithms has been identified, and they are only

partially understood. The methods of emergent algorithms as they apply to interoperability
include cooperation without coordination, dynamic adaptation, continuous trust validation,
dynamic capability assessment, opportunistic actions, anticipatory neighbor assistance,
encouragement and influence, perturbation, and survivable architectures.

3.4 Potential New Approaches to Security

For environments such as the semantic Web or net-centric computing, entirely new ways of
establishing adequate trustworthiness and developing trust must be created. Potential

mechanisms that can establish trustworthiness within this essentially untrustworthy
environment can be placed in three very broad categories:

1. approaches that establish trust through a trusted third party, such as a certificate
authority for public-key certificates. This approach is proven in security application, but
it is questionable whether the approach could "keep up" with changing components and
expectations in a highly dynamic environment. The approach is also subject to calamity
resulting from failure of the central trust authorities.

2. approaches based on networks of members who incorporate trust information into
modeling of relationships for a small number of other members. These trust webs can
then be composed into trust relationships for all members. This approach, like the

previous approach, requires research in defining the semantics of trust and trusting
relationships, models for computing and manipulation of trust, and algorithms for
quickly building and updating trust webs.

3. approaches that essentially mimic the swarming behavior of ants. For example, software
"ants" deposit a cue on a search trip for a capability and modify that cue on the return
trip if the correct capability is found. Other ants can then "swarm"-follow that cue to

the goal. This allows rapid dissemination of information about trustworthy and
untrustworthy actors by employing very simple, locally implemented rules. Such
techniques are promising, particularly for highly volatile network environments, but are

relatively new and unproven outside of network routing application.

There is a significant volume of research aimed at developing and maturing each of these
approaches. It is entirely possible that all these approaches will find their way into use in

CMU/SEI-2005-TN-033 15



varying circumstances, or even as complementary ways of varying trust and supporting
interoperability.
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4 Summary

Ontologies, SOA, emergent algorithms, and novel approaches to security are providing
significant opportunities to improve the degree and flexibility of interoperability that can be
achieved. Alone, each technology is limited. In combination, these technologies have the
potential to address many problems of data sharing, application construction, and managing
the cumulative effects of the actions and interactions of diverse and varying system
components. Before they reach that potential, several questions must be answered:

"* Can accepted ontologies be established and maintained by communities of interest,
and can techniques and tools be built to map between ontologies?

"* Can the community quantify the characteristics of applications and services that
affect semantic interoperability such that engineers will trust SOA services in
demanding applications?

"* Will emergent algorithms be developed that establish control of our increasingly

unbounded systems?

"* Can sufficient security and trust be found in massively connected systems of
systems?

Changes in technology alone will not be sufficient to drive the shift from integrated systems
to supporting integrated solutions. Individual program offices that are building individual
systems will continue to be a barrier to integrated solutions to the extent that each considers
its program distinct from others. In addition, even if program offices begin to build
capabilities that are flexible and can be integrated to the extent that system boundaries are no
longer evident, end users will continue to be thwarted in their desire for integrated solutions
unless the organizations they represent and the doctrine they employ become equally flexible.
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